

IEE-CAS

(Institute of Electrical Engineering Chinese Academy of Sciences)

Presentation

http://www.iee.ac.cn

Tel:+8610-82547001,Fax:+8610-82547000

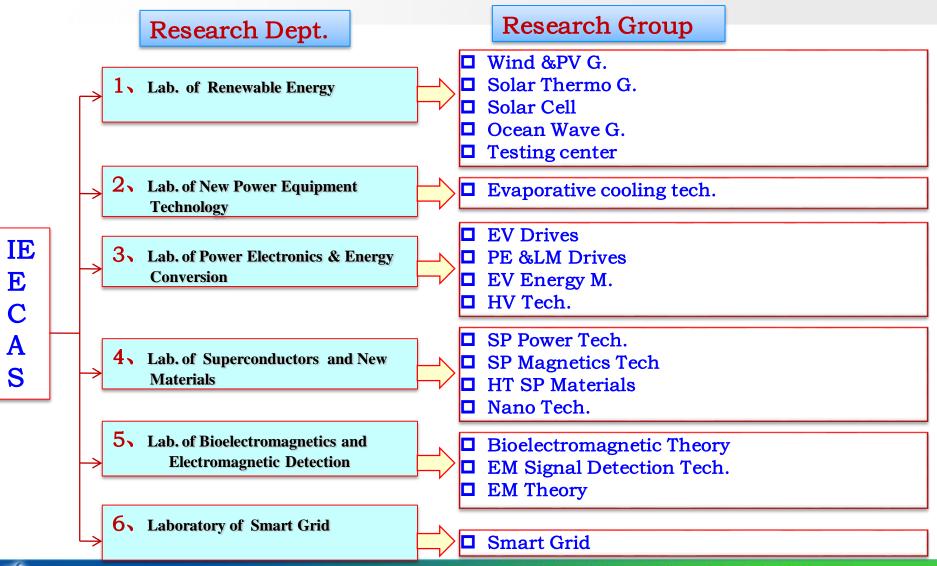
Outline

1 General information of IEE-CAS

Solar Thermal Group and main activities

Brief Introduction

- > Founded in 1958
- > Focused on the basic knowledge and high-tech. R&D in the field of electrical engineering
- > One of 104 research institutes in CAS
- > 431 employees (375 are scientists, engineers, research assistants)
- > About 277 Post Doc., Ph.D. and Master students
- > 2 National Energy R&D Centers
- > 4 Key Labs of CAS, 4 Key Labs of Beijing



Organizational Structure

Lab. of Renewable Energy

Solar Thermal Power Technology

- □ 1st MW tower-type solar thermal power plant in China as well as in Asia
- □ 10MW tower-type thermal power plant are being developed

Wind & PV Generation Technology

- Nearly 200 PV power stations in Tibet
- 2MW hydro and PV complementary power Plant in Qinghai
- 20MW PV plant in Golmud City of Qinghai

1MW STE plant

Lab. of Renewable Energy

Solar Cell Technology

- New types of high- efficiency silicon solar cell
- □ Low-cost silicon thin film solar cell
- Low-cost CdTe thin film solar cell

Ocean Wave Power Technology

- Demo of 5kW ocean wave generator with magnetic fluid
- □ Recovery technology of spilled oil of ocean with magnetic fluid

PV & Wind Generation System Quality Test Center of CAS

MW level PV production

CdTe testing

Lab. of New Power Equipment Technology

Evaporative cooling technology

- Evaporative cooling technology and Applications in hydro-generators, turbine generators, wind generators, transformer and some other power equipments
- ☐ The evaporative cooling system for 70MW hydro-generators in three Gorges power plant in 2012/2013
- □ 2.5MW and 5MW PM evaporative cooling Wind generators in 2012
- ☐ The evaporative cooling system for super-computers in 2013

Two 700MW water turbine generator

cable

Research Activity

Lab. of Superconductors and New Materials

Superconducting Power technology

- Superconducting power cable
- □ Fault current limiting technology
- Superconducting magnetic energy storage
- Other superconducting power equipments

Superconducting Magnet & Materials

- Superconducting magnets with complex structure & special cooled manner
- Space superconducting magnets & special electrical equipments
- New HT superconducting Materials

transformer

> 9.4T; diameter:54mm;

SPCL

1Hz/h;

ESS

> 0.2ppm (50mm DSV)

Lab. of Power Electronics & Energy Conversion

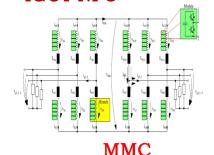
Electric Drive Technology for EV

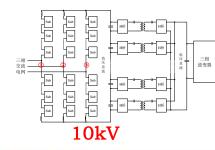
- □ R & D of motor drive system for EV
- R & D of electrical system for EV
- Multiple phase motor drive
- Package technology of power modules

High Power Drive Technology

- Topology and Control of High Power Converters
- Analysis and Control of Large Linear Motors
- Large Electric Drive Technology
- New Power Converters and Applications in Transportation and Power System

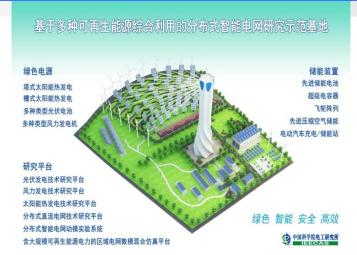
Drive systerm





IGCT NPC

500kVA



Laboratory of Smart Grid

- Basic Research of Smart grid and DC grid
- □ System architecture design, energy management, control and relay protection technology of DG based on Micro-grid structure
- Energy storage technology for DG and power quality improvement with Ultracapacitor, flywheel and battery

PV+wind

Power electronic transformer

Battery energy storage unit

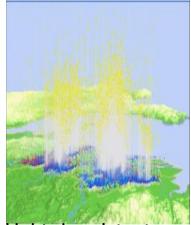

Flywheel ESP station

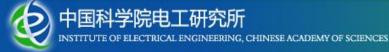

Super capacitor energy storage unit

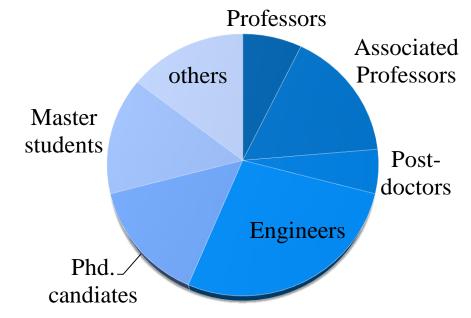
Electric vehicle charging pile

Data acquisition and information management system

Lab. of Bioelectromagnetics & Electromagnetic Detection


- Biological effects of electromagnetic field and their mechanism
- Detection of biological spontaneous electromagnetic characteristics and its application
- Bioartificial organ
- Electromagnetic technique intersected with nanotechnique and bio-technique.


Long time observation base of low frequency electromagnetic field on the dynamic and plant ecological effect



Solar Thermal Group

Established in 2001

Now, 36 staffs including 4 professors, 9 associated professors, 15 engineers and others.

- 3 Post-doctors
- 9 Phd. Candidates
- 8 Master students

www.chsel.com

Solar Thermal Group

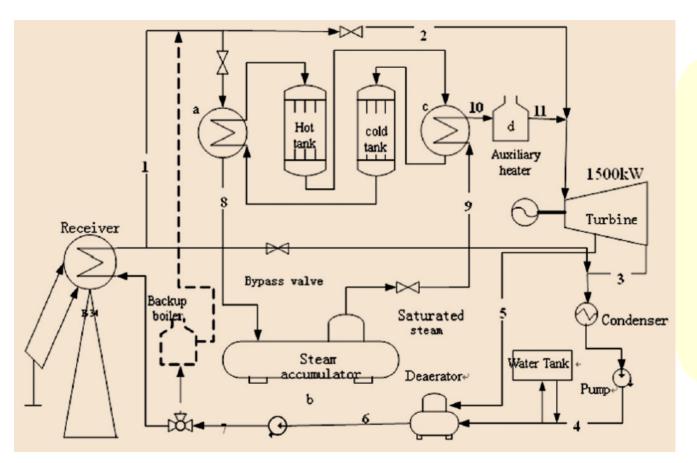
Research Interests

- ✓ Solar thermal power technology (solar tower power, solar parabolic trough power, solar dish Stirling power):
 - System optimization of CSP plant,
 - Solar concentrator,
 - Receiver,
 - □ Thermal energy storage,
 - Solar thermal power materials,
 - Control technology
- ✓ Solar desalination
- **✓** Solar integrated building
- ✓ Solar collector/heater thermal performance testing technology

1MWe solar tower pilot plant

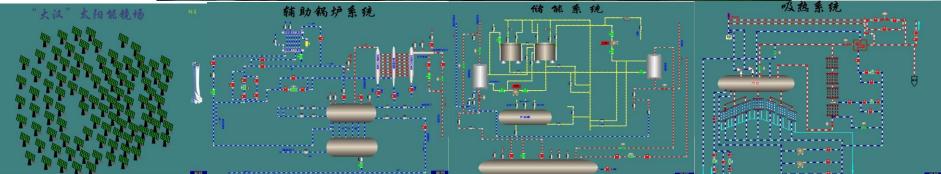
Tower: 119m, three apertures, HTF: water/steam, SF:10000m², Turbine: 1.5MW

1MWe solar tower pilot plant in winter, 2011

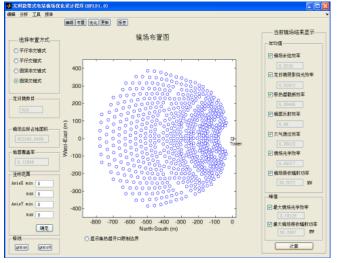


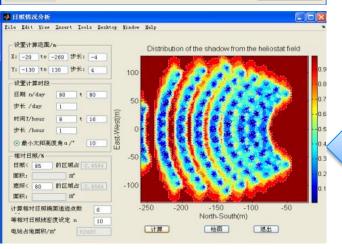
Schematic flow chart of the 1MWe solar tower pilot plant

Two oil tanks
steam accumulator
100m3
2.5MPa



Simulator of the 1MWe solar tower pilot plant





Heliostat field layout design software

PS10 solar tower plant	reported	Calculated by HFLD	errors
nominal optical efficiency	77%	76.5%	-0.5%
Nominal received peak power	55.0MW	56.3MW	+1.3MW
Annual optical efficiency	64.0%	64.08%	+0.08%
Annual cosine efficiency	>81%	82.3%	+1.3%
Annual shading and blocking efficiency	>95.5%	92.9%	-2.6%

considering the land utilization

Heliostats

120m2

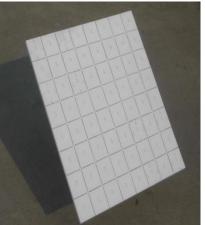
High order surface heliostat

125m2

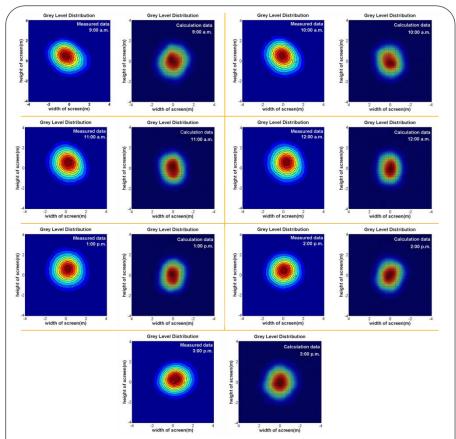
Heliostat used in Dahan plant

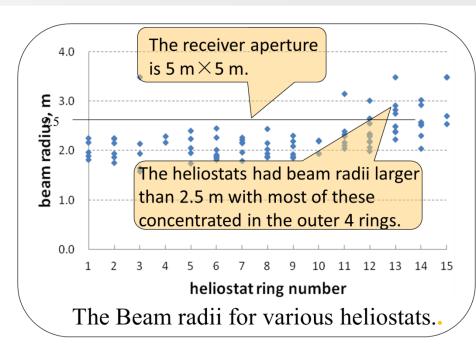
108m2

Focal plane


Wind load on concentrators testing

Wind tunnel: testing section 2. 5m×3m, Speed:0-30m/s

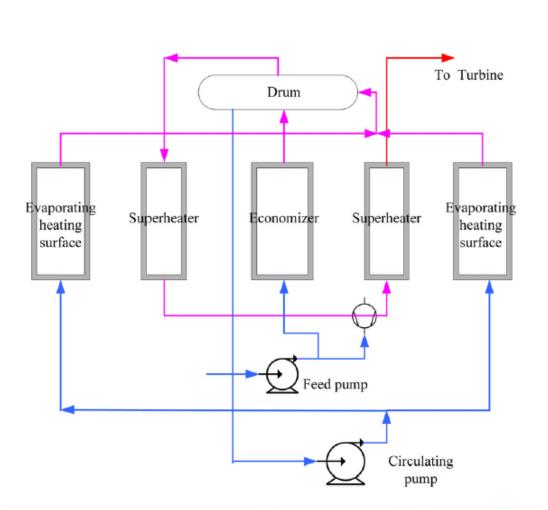


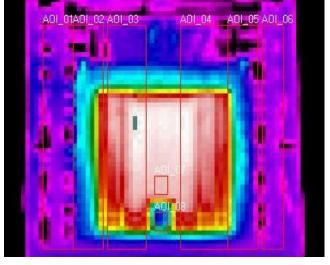


Optical performance of a heliostat

Comparison of the measured and predicted grey level distributions for the #9.0 heliostat on March 14, 2013.

26% of the measured heliostats radii were more than 2.5 m, so additional alignment was needed.





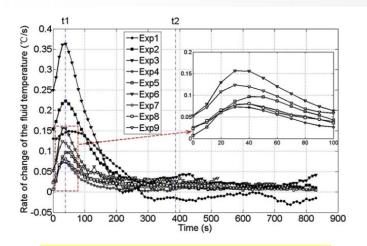
Water/steam cavity receiver

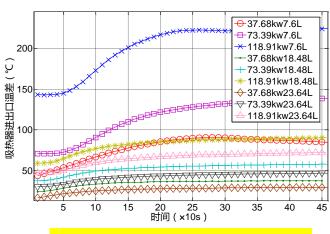
TES system

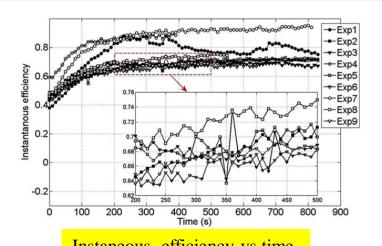
Two oil tanks

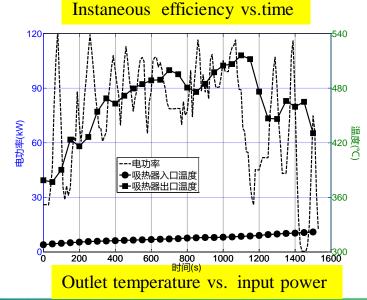
DCS control room

Molten salt test platform





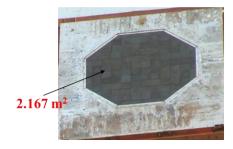

Thermal performance test



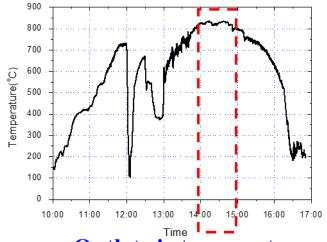
Time derivative of fluid temperature

Δt vs. input power and flowrate

Molten salt super critical steam generator test platform

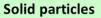


1MWth air receiver


160mm×160mm

- The maximum power is 845 kW
- The maximum of incoming solar thermal power is 1076 kW
- The maximum of outlet air temperature is 835 °C
- Average efficiency at 14:00-15:00 is 0.77

Outlet air temperature



Quartz tube solid particle air receiver

Quartz tube

- √Inner diameter: 40mm
- √Thickness: 3mm √Length: 500mm



- >silicon carbide
- ➤ Diameter: 1mm

Stainless steel entrance duct

- □ Outlet air temperature of five tubes: 624.1°C
- □ Outlet air temperature of single tubes: 866.6°C

Dish concentrator

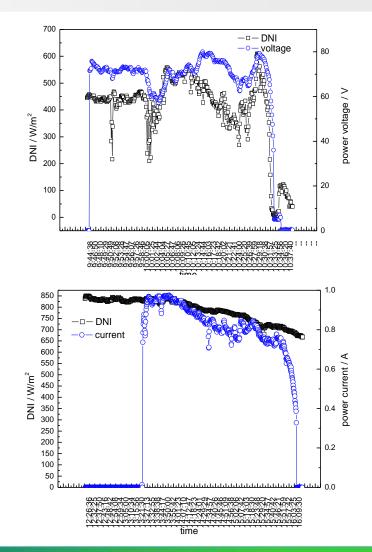
10m dish concentrator in Dezhou

5m dish concentrator


Membrane stretched dish concentrator

5m dish concentrator

55 m² dish concentrator in Guangzhou



Dish Stirling system(1kWe)

Himin-PTR

 Matched glass-tometal seals

Automatic sealing

• high temperature solar-selective absorber coating

•Emittance $\varepsilon < 14\%$ at 400 °C Absorptance > 95 % Highest temperature: 550°C at vacuum, 350°C at air

 New designed getter assembly, can absorb Hydrogen.

 Increased getter quantity mounted in cool place, maintained 20 years.

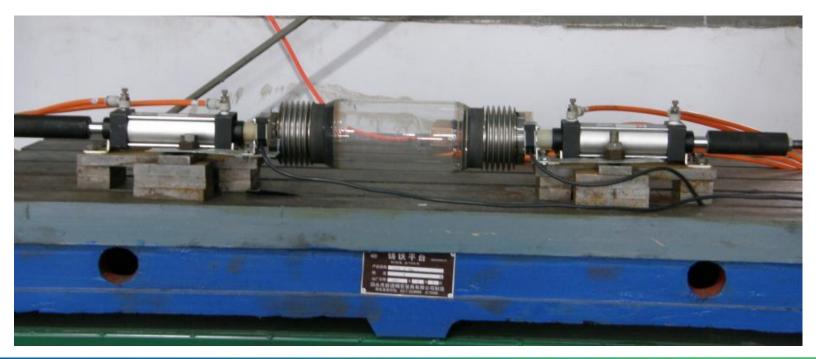
•Pressure < 10⁻² Pa

Low profile radiation shield.

Design with reduced bellow length, active length >96%

Vacuum performance

- leaking rate $<1 \times 10^{-11}$ Pa m³/s
- Max Vacuum = 3×10^{-4} Pa,
- Vacuum in long time using >10⁻² Pa

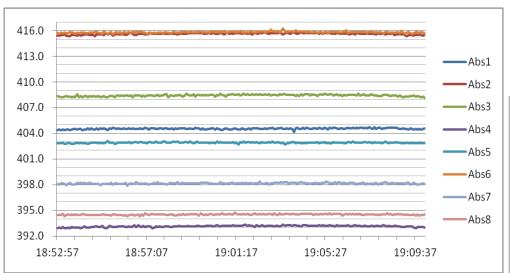

Fatigue life test

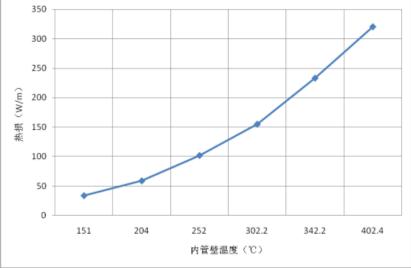
☐ Fatigue cycle: 20times/min

☐ Positive displacement: 12mm;

□ Negative displacement: 10mm;

 \square results: >40000times, life>25 years





Thermal performance test

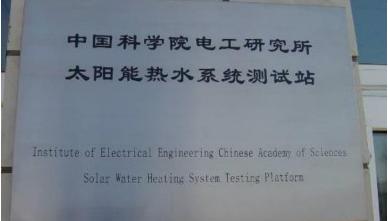
➤ Heat loss test: heat loss in 150-400°C operation temperature

100m parabolic trough testing loop

300kW_{th} solar furnace

Solar desalination demonstration

- □ PT: 200m², steam pressure :2.35MPa
- □ Testing results of water: 0.35ton/hour



Solar water heating system testing system

Thanks for your attention!

On going projects

- □ 1MWe parabolic trough power plant (comparison with tower, same power block), will be finished in 2016
- 1MW_{th} molten salt receiver and 2MW_{th} molten salt thermal energy storage testing loop (two-tank and thermocline), will be finished in 2015

