

STAGE-STE related capabilities and infrastructures at **ETH Zürich**

Department of Mechanical and Process Engineering Professorship of Renewable Energy Carriers, <u>www.pre.ethz.ch</u>

- 1. Overview ETH Zürich (ETHZ) & Professorship of Renewable Energy Carriers (PREC)
- 2. Capabilities and major infrastructures
- 3. Research topics
 - 3.1 related to WP7
 - 3.2 related to WP9
 - 3.3 related to WP12

Overview ETHZ & PREC

ETH

Swiss Federal Institute of Technology Zurich Founded in 1854 380 professorships 16,000 students 22 Nobel Prize awardees

PREC Professorship of Renewable Energy Carriers

Staff (2014):

- 1 professor

- 5 post docs
- 25 PhD students
- 1 deputy head 55 MS students
- 3 senior scientists 3 engineers, CFD support
 - PSI's Solar Technology Lab

Capabilities and major infrastructures

STAGE-STE European Energy Research Alliance

Research Mission

Advancement of the thermal and chemical engineering sciences applied to the

field of renewable energy technologies

Experimental facilities

Solar Furnace Radiative Power: 40 kW Radiative Flux: 5,000 suns

High-Flux Solar Simulator Radiative Power: 50 kW Radiative Flux: 11,000 suns www.stage-ste.eu Radiation Heat Transfer Lab

Chemistry & Physics Labs

Packed bed of rocks

- Abundant and economical storing material
- Applicability in a wide range of temperatures
- Direct heat transfer between storage material and HTF
- No degradation or chemical instability
- No safety concerns
- Mechanical stability due to concrete walls and conical shape

•Haenchen M., Brückner S., Steinfeld A., "High-Temperature Thermal Storage using a Packed Bed of Rocks - Heat Transfer Analysis and Experimental Validation", *Applied Thermal Engineering*, Vol. 31, pp. 1798-1806, 2011.

•Zanganeh G., Pedretti A., Zavattoni S., Barbato M., Steinfeld A., "Packed-Bed Thermal Storage for Concentrated Solar Power – Pilot-Scale Demonstration and Industrial-Scale Design", *Solar Energy*, Vol. 86, pp. 3084–3098, 2012.

Thermal storage prototype in Biasca, Switzerland

Limestone

Quartzite

Calcareous Sandstone

• Applied Thermal Engineering 31, pp. 1798-1806, 2011.

• Solar Energy 86, pp. 3084–3098, 2012.

Modelling: Transient Heat Transfer

• Solar Energy 86, pp. 3084–3098, 2012.

Phase-change materials & Gas-solid reactions for thermal storage

PCMs

- Al/Si eutectic metal alloys
- atop the packed bed of rocks

Gas-solid reactions

- Manganese oxide reaction cycle
- Calcium hydroxide reaction cycle

	Manganese oxide	Calcium hydroxide
Application	Central tower CSP	Trough receiver CSP
Stoichiometry	$6 \text{ Mn}_2\text{O}_3 \leftrightarrow 4 \text{ Mn}_3\text{O}_4 + \text{O}_2$	$Ca(OH)_2 \leftrightarrow CaO + H_2O$
Reaction temperature	700 - 1000 °C	350 – 550 °C
Partners: DLR (D), Siemens (IL), Eramet & Comilog (BE), IMDEA (ES), U. Siegen (D), Bühler AG (CH), PSI (CH)		

- www.stage-ste.eu –

Solar fuels from carbonaceous feedstock

• Fuel 89, 1133-1140, 2010.

Energy & Env. Science 4, 73-82, 2011.
AIChE Journal 57, 3522-3533, 2011

Solar-driven vis-à-vis autothermal

- Higher energetic value of the syngas produced
- Higher syngas output per unit of feedstock
- Higher quality of the syngas produced
- Elimination of air-separation unit

Solar Thermochemical Gasification Feedstock

Experimental run with wet bagasse

Wieckert C., Obrist A., von Zedtwitz P., Maag G., Steinfeld A., "Syngas production by thermochemical gasification of carbonaceous waste materials in a 150 kWth packed-bed solar reactor", *Energy & Fuels*, Vol. 27, pp. 4770-4776, 2013.

(e.g. H₂, syngas, liquid fuels)

- www.stage-ste.eu –

Solar fuels from thermochemical cycles

• Energy & Fuels 26, 7051–7059, 2012.

[•] Energy & Env. Science 5, 6098-6103, 2012.

Development of a novel indirect-irradiation solar receiver based on annular reticulate porous ceramics with air as working fluid

STAGE-STE European Energy Research Alliance

Development of a novel indirect-irradiation solar receiver based on annular reticulate porous ceramics with air as working fluid

The ETH – Alstom Receiver concept

Ray-tracing analysis for the design of non-imaging secondary concentrators for solar parabolic dishes and solar towers

- Goal: approximate parabolic shape with a array of membranes
- Design of secondary non-imaging concentrators: CPC, trumpets, dielectrics.

Partners: Airlight Energy